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Overview

Brief introduction to Resilient Ops

Delay prediction using flightsayer

Optimization and metrics under uncertainty using Toolkit for Optimality Metrics
Overlay (TOMO)
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Uncertainty is not the enemy... not quantifying and
hedging against it is

The future is uncertain, even in the short term
» Weather forecasts are probabilistic
 Human actions (FAA, airlines) aren’t deterministic
» Conformance to plans isn’t perfect
There are two complementary approaches to dealing with uncertainty

« Try and reduce uncertainty through better technology and processes

-
* Measure, quantify, and predict uncertainty to hedge against it
— Develop methods to predict randomness
— Build algorithms that explicitly account for uncertainty
\_
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Flightsayer: Probabilistic flight delay predictions
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Predicting flight delays using flightsayer

Flightsayer initially developed as a passenger-facing tool
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Flightsayer generates probabilistic forecasts of delay
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An example of a probabilistic delay forecast
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It is possible to make sound decisions even with imperfect information
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Flight forecasts are driven off probabilistic capacity
forecasts
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Likelihood of a GDP/Ground Stop at LGA

7/28 8pm 7/29 Midnight  4am 8am Noon

ATCSCC Advisory

ATCSCC ADVZY 050 LGA/ZNY 07/29/2016 CDM GROUND DELAY PROGRAM

MESSAGE:

EFFECTIVE TIME:
SIGNATURE:

CTL ELEMENT: LGA

ELEMENT TYPE: APT

ADL TIME: 1501z

DELAY ASSIGNMENT MODE: UDP

ARRIVALS ESTIMATED FOR: 29/1501Z - 30/0359Z \
CUMULATIVE PROGRAM PERIOD: 29/1501Z - 30/0359Z

PROGRAM RATE: 34/34/36/36/36/36/36/36/36/36/36/36/36

FLT INCL: ALL CONTIGUOUS US DEP

DEP SCOPE: 1425

CANADIAN DEP ARPTS INCLUDED: CYHZ CYOW CYUL CYYZ CYTZ CYQB
DELAY ASSIGNMENT TABLE APPLIES TO: ZNY

MAXIMUM DELAY: 116

AVERAGE DELAY: 62

IMPACTING CONDITION: WEATHER / WIND

COMMENTS: LGA ARR RWY 4, DEPT RWY 13, LOW POP UP.

291504 - 300459
16/07/29 15:04
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Under the hood: Flight delay forecasts are generated

from airport capacity forecasts

Weather
(TAF)
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Schedule

Capacity
prediction
engine

Airspace
simulator

Delay
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- J

All flight and capacity predictions are accessed via a simple API
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TOMO: Measuring and optimizing under uncertainty
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TOMO: Measuring and optimizing under uncertainty

TOMO is a large-scale optimization model that computes optimal trajectories of
aircraft under various objectives such as delays, fuel burn, and environmental
impact

» Allows a simulated scenario to be compared to a baseline

* Facilitates an apples-to-apples comparison of two scenarios by normalizing the
performance of each to the “best achievable” case

Traditionally, there have been two challenges to using an optimization-based
baseline

« Computational difficulty in calculating optimal solutions to large-scale problems

» Calculating optimal solutions under uncertainty (need to determine the optimal
decisions given that there was uncertainty in the inputs when the decision was
made)
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TOMO is designed to provide optimal metrics as well
as actionable decision feedback

TOMO
Output
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Best-case
solution
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% trajectories

Large-scale
Optimizer
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capacity, | ' Decision
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input
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Key is being able to optimize under uncertainty

Large-scale optimization of trajectories given schedules and capacities has been
studied by various groups (including NASA)

However, optimizing under uncertainty has been overlooked, typically for being
”’too hard”

Key to optimizing under uncertainty is to provide trajectories with recourse
» If scenario X happens, fly this this trajectory; if not, fly this other trajectory

« Output needs to explicitly state decisions that need to be made under all
scenarios (effectively generating a detailed playbook for each flight)
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TOMO generates routes with recourse when given a
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a
probabilistic scenario tree capacity forecast
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Model generates routes with recourse when given a
probabilistic scenario tree capacity forecast
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Probability trees of airport capacity can be generated using

flightsayer’s probabilistic capacity forecasts
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Solved by column generation (decomposition of a large
problem into multiple parallel sub-problems)
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A day in the life of the NAS (2030)
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Optimization under uncertainty is key to greater
autonomy and better understanding of decisions

Being able to optimize under uncertainty will be key to realizing greater autonomy
in planning and execution

« Beyond human capacity to envision all possible scenarios that could play out and
develop a plan for each scenario

* Will lead to greater efficiency through better hedging strategies

Being able to “retroactively” optimize under uncertainty will lead to a better
understanding of past decisions

* Were decisions on 7/29 better than on 7/28 given the information that was
available?

« Was Delta more efficient than American given the operating constraints and best
available information?
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Takeaways

For Airline Operations Center

« Uncertainty can be quantified, and lead to meaningful decisions

« IROPS, dispatch may find probabilistic predictions useful, as long as they are
interpreted consistently and rigorously

For NASA

« Developing predictive algorithms that are rigorous and robust is important

« Models that explicitly deal with uncertainty will be key to achieving
autonomy for planning and optimization
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